

RF & Microwave System Design

Transforming the Industry with Modular Building Blocks

> Erik Luther Vice President erik.luther@xmicrowave.com

RF & Microwave Applications

Wireless Communications

Satellite Communications

Radio Astronomy

Test & Measurement

Radar & Sensing Defense / Weather / Automotive

Big Physics Particle Accelerator

Quantum Computing

Medical Devices

RF and Microwave System

Conventional Design

6 Decades of Tradition

Specification Control Drawing

- Meet or exceed all design goals
- Determine steps to achieve first pass success

1. Design the System Diagram

2. Component Selection

× N

Multiplier

PLL + VCO

Band Pass Filter

Design vs Buy

Surface Mount **Monolithic Amplifier** DC-4 GHz

Features

 InGaP HBT microwave amplifier Miniature SOT-89 package . Internally Matched to 50 Ohms . Frequency range, DC to 4 GHz · Output power, 18.0 dBm typ., · Excellent package for heat dissipation, exposed metal bottom . Low thermal resistance for high reliability · Aqueous washable · Protected by US Patent 6,943,629

• Cellular · PCS · Communication receivers & transmitters

General Description

Gali=51+ (RoHS compliant) is a wideband amplifier offering high dynamic range. Lead finish is SnAgNi. It has repeatable performance from lot to lot, and is enclosed in a SOT-89 package. It uses patented Transient Protected Darlington configuration and is fabricated using InGaP HBT technology. Expected MTTF is 7,000 years at 85°C case temperature. Gali⊏51+ is designed to be rugged for ESD and supply switch-on transients.

simplified schematic and pin description

Galic=51+ CASE STYLE: DF782

RoHS Compliant
 Sulls anothins RoHS Compliance. See our wate sa

3 RE-OUT & DC-IN 7 GEOLIND

Features

mount M1 and M3 mixers.

Compact 3mm QFN SMT Style Package

GaAs DOUBLE-BALANCED MIXER

The MM1-1130HSM is a passive GaAs double balanced MMIC

mixer suitable for both up and down-conversion applications.

As with all Marki Microwave mixers, it features excellent

conversion loss, isolation and spurious performance across a

broad bandwidth and in a small form factor. The MM1-

1130HSM is available in a lead-free, RoHS compliant QFN

surface mount package and is compatible with standard leaded

and lead-free PCB reflow soldering processes. The MM1-

1130HSM is a superior alternative to Marki Microwave surface

- Broadband Performance Excellent Unit-to-Unit Repeatability
- RoHS Compliant

Electrical Specifications - Specifications guaranteed from -55 to +100°C, measured in a 500 system. Specifications are shown for Configurations A & B. See page 2 for port locations.

Marki

MM1-1130HSM

Parameter	LO (GH2)	RF (Geta)	IF (GHz)	Min	Тур	Max	LO drive level (dBm)
Conversion Loss (dB)	25.	2.1	1.7	12.52	1201	Const 1	
Configuration A						14	
Caninguration B			1.1		7,0	16	
Isolation (dB)				12.12		17 - 77 7	
LO-RF			1. A.		See		
LO-IF			Carlos Carlos		Plots		
RF-IF	10	-30	DG-12			-	
Input 1 dB Compression (dBm)				0.61	-9	4	Ganfig. A: +.13 to +20
					49		Config. 8. +12 to +17
Input Two-Tone Third Order			1.1			1	
Intercept Point (dBm)			- X.		+21		Config. A. +13 to +20
President and a second second				1.1.1	+21		Gonfig, B: +12 ig +17

Part Number Options

Model Number	Description
MM1-1130HSM-2 *	Surface Mount, IF Port Configuration -2
EVAL-MM1-1130H	Connectorized Evaluation Fixture

215 Vineyard Court, Morgan Hill, CA 95037 | Ph. 408.778 4200 | Fax 408.778.4300 | info@markimicrowave.com

2a. Component Selection Process

3. Cascade Analysis and Simulation from Measured Data

4. Bench Prototype

5. Prototype to Layout Process

ADF4159 PLL

ANALOG DEVICES

EV-ADF4159EB1Z/EV-ADF4159EB3Z User Guide UG-383

One Technology Way + P.O. Box 9106 - Norwood, MA 02062-9106, U.S.A. + Tel: 781.329.4700 + Fax: 781.461.3113 + www.analog.com

Evaluating the ADF4159 Frequency Synthesizer for Phase-Locked Loops

FEATURES

Self-contained board, including synthesizer, 100 MHz reference, USB interface, and voltage regulators Accompanying software allows control of synthesizer functions from a PC (via USB interface) Externally powered by 5.5V and 15V supplies Evaluates the ADF4169

EVALUATION KIT CONTENTS

EV-ADF4159EB12 or EV-ADF4159EB3Z evaluation board CD with evaluation software USB cable

REQUIRED ADDITIONAL EQUIPMENT

VCO (tor VV-ADP41591832) Loop filter components (for EV-ADP41594832) Soldering equipment Spectrum analyzer Power supplies (5.5 V and 15 V) Windows*-based PC with USB port for evaluation s REQUIRED DOCUMENTS

ADF4159 data sheet ADF4169 data sheet UG-383 user guide

LEASE SEE THE LAST PAGE FOR AN IMPORTAN

NO LEGAL TERMS AND COM

REQUIRED SOFTWARE Analog Devices, Inc., ADF4158/9/69 PLL evaluation software, Version 4.x or higher (included on the CD in the evaluation board kir or available for download at www.analog.com)

GENERAL DESCRIPTION

The InV. ADF4155EB22RV.ADF4159EB32 evaluates the performance of the ADF4195 frequency synthesizer for phase locked loops (FIL2) and the ADF4195 frequency synthesizer. A photograph of the evaluation board is shown in Figure 1. The evaluation board an involves the ADF4195 synthesizer, a USB connector, SMA connectors, a reference oscillator, and power supply connectors. There are also footprints for arctive filter components and a voltage controlled or cative filter components and a voltage controlled or cative filter (FGC), for on-board temperature compensated availator (VCO), if used, finese components must be soldiered to the board to complete the loop. An on-board temperature compensated availator (SIGC) (TCIXO) provides the 100 MHz reference frequency. A USB cable to included to connect the board to a PC USB port.

In addition, the evaluation kit contains Windows*-based software to allow easy programming of the synthesizer.

Figure 7

Rev. D (Page) of 15

ADF41	59	0.10x Styred
PIN CO	NEIGURAT	TION AND FUNCTION DESCRIPTIONS
		Non and Fondrick Besonin fibris
		1 1
		Figure 5. Pin Configuration
l'able 6. P	in Function De	scriptions
Pin No.	Mnemonic	Description
	CPGND	Charge Pamp Ground. This pin is the ground victum path for the charge pump.
58 T.	AGINE	Analog Ground.
5 L L L	18-Mg	Conditionentary input to the RE Prescater, Decoupair this peri to the globard pairie with a small bypass caracitor, typically 100 pF.
5	REAL	input to the RF Prescaler. This small signal input is normally ac-coupled from the VCO.
5.2.8	AVIso	Positive Power Supply for the NF Section, Place decoupling capacitors to the ground plane as close as possible to these pine.
P.	REFIN	Reference input. This CMOS input has a nominal threshold of DWar/2 and an equivalent input resistance of 100 kGz It can be driven from a TTL or CMOS crystal oscillator, or it can be ac-coupled.
10	DGND	Digital Ground
11	SDGND	Digital 2-A Modulator Ground. This pin is the ground return path for the 2-A modulator
12	TXom	Transmit Data Pin. This pin provides the data to be transmitted in FSK or PSK mode and also controls some ramping functionality.
13	a	Chip Enable (18 V Logic) A logic low on this pin powers down the device and places the charge pump output into three-state mode
14	CLK.	Senal Clock input: This input is used to clock in the senal data to the registers. The data is latched into the input shift register on the CLK noing edge. This input is a high impedance CMOS input.
15	DATA	Senal Data input. The senal data is loaded MSB first; the three LSBs are the control bits. This input is a high Impedance CMOS input.
16	LE	Load Enable input. When LE is high, the data stored in the input shift register is loaded into one of the eight latches, the latch is selected using the control bits. This input is a high immedance CMOS input.
17	MUXOUT	Multiplicer Output. This pin allows various internal signals to be accessed externally.
14	SDMan	Power Supply for the Digital 2-6 Modulator. Place decoupling capacitors to the ground plane as close as possible to this pin
19	DVto.	Positive Power Supply for the Digital Section. Place decoupling capacitors to the digital ground plane as close- as possible to this plan.
20, 21	SW1, SW2	Switches for Fast Lock.
22	W	Charge Pump Power Supply. The voltage on this pin must be greater than or equal to Miss
3	Ran	Connecting a resistor between this pin and ground sets the maximum charge pump output current. The relationship between he and Rur is as follows: $b_{\rm curr} = 24.86 R_{\rm cur}$ Where $b_{\rm curr} = 40~{\rm Me}$
		and the state
	1.0	Re1-5,1 KU
24	CP	R_{0} = 5,1 kg. Charge Pump Gutput, When the charge pump is enabled, this output provides ±to to the external loop filter: which, in turn, other, the external VCD,

5. Prototype to Layout Process

Many Decisions, So Little Time

- PCB
 - Material (FR4, Rogergers,...)
 - PCB plating (Solder, wire bond, ...)
 - Layers (2, 4, ...)
- RF Trace specification
 - Type (Microstrip, coplanar, ...)
 - Dimensions (dK, pad size,...)
 - Launch / Transition (connector, board-to-board...)
- Available components
 - Off the shelf options (ADI, MiniCircuits, ...)
 - Reference circuits (Datasheet, past designs, ...)
 - Bias, control requirements (regulation, active bias...)
- Design and Layout
 - System diagram
 - Analysis (simulation, cascade,...)
 - Prototyping

- Housing
 - SWAP (size, weight, power/thermal, ...)
 - Materials (aluminum, brass, ...)
 - Cavity effects (resonance, shielding, ...)

Drop-in Component

Drop-in Component

Advantages

- Exists with known lead time
- Characterized launch-to-launch
- Defined form factor
- Known manufacturability / repeat ability
- Ready to integrate
- Reasonably priced

"Why not drop-in everything?"

"If you want to *teach* people a *new way* of thinking, don't bother trying to *teach* them. Instead, give them a tool, the use of which will lead to *new ways* of thinking."

Robert Buckminster Fuller

Drop-in Design Process

Modular Platform 101

RF & Microwave Breadboard

Standardized Drop-in

- Coplanar launch
- 0.54" x 0.54"
- Holes at corners
- 8 mil RO4003

X-MW Probe (DC to 67 GHz)

Launch-to-Launch Solderless Interconnect

1. Line up the Launch

2. Place the G-S-G Jumper

3. Attach the Anchors

1000's of Drop-Ins

Custom MMIC – CMD192C5 Distributed Amplifier

X-Microwave Cavity Filter

Peregrine – PE43704 Digital Step Attenuator

P1 S 0166 F P2

DLI - PDW05758 Splitter

Peregrine – PE46120 Phase and Amplitude Controller

NEL – O-CS8 Low Phase Noise Osc

Analog Devices - ADF4159 Phase Lock Loop

Bias and Control from the Bottom via Spring Pins

X-Microwave PLL Evaluation Solution

Completed Prototype of a PLL / VCO Circuit

One-Touch Component Configuration

All Components (All)	
onolithic Phase Amplitude Controllers (MPAC)	
Digital Step Attenuators (DSA)	
Phase Locked Loops (PLL)	
PLLs with Integrated VCOs (PLL/VCO)	
Switches (SW)	
	All Components (All) onolithic Phase Amplitude Controllers (MPAC) Digital Step Attenuators (DSA) Phase Locked Loops (PLL) PLLs with Integrated VCOs (PLL/VCO) Switches (SW)

- One-touch config for all manufacturers' parts
- Plug and play operation
- Supports for Serial (SPI) and parallel control
- Over 200 controllable parts

Online Design Tools

Mechanical Layout / BOM Creation / Cascade Analysis <u>cascade.xmicrowave.com</u>

Common Subsystems

Reflectionless Filter

Balanced Amplifier

Image Rejection Mixer

ADIsimPLL

DIE Drop-In Blocks

Keysight HMMC-1002

HMC-APH596 AMPLIFIER, 16 - 33 GHz

Two Channel IQ Receiver (18-40 GHz)

Utility of Modular Drop-ins

Prototyping

Connectorized Modules

Integrated Microwave Assembly

Core Products: X-MWblock Connectorized Modules

Combined Drop-in Blocks

Compatibility Among Many Vendors

Supporting Modular Drop-ins

Modular Building Blocks

Wholistic View

- Evaluation Platform
- Design Methodology
- Manufacturing Process

Start your Own Design Today!

- 8 mil + 30 mil Rogers 4003 (49 mil stack-up)
- 17 mil RF Trace
- 0404 block = 0.54" x 0.54"

First Prototype = Production Assembly

Simulate....Prototype....Production

Thank you!

Erik Luther Vice President – X-Microwave erik.luther@xmicrowave.com

X-Microwave, LLC (512) 355-7115

www.xmicrowave.com

